Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.466
Filtrar
1.
J Biomol Struct Dyn ; 41(5): 1776-1789, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34996337

RESUMO

The AcrAB-TolC efflux pump (EP) confers multidrug resistance to Salmonella enterica, a major etiological agent of foodborne infections. Phytochemicals that inhibit the functions of AcrAB-TolC EP present ideal candidates for reversal of antibiotic resistance. Progressive technological advancements, have facilitated the development of computational methods that offer a rapid low-cost approach to screen and identify phytochemicals with inhibitory potential against EP. In this study, 71 phytochemicals derived from plants used for medicinal purposes in Mexico were screened for their potential as inhibitors of Salmonella AcrB protein using in silico approaches including molecular docking and molecular dynamics (MD) simulation. Consequently, naringenin, 5-methoxypsoralen, and licarin A were identified as candidate inhibitors of AcrB protein. The three phytochemicals bound distal/deep pocket (DP) and hydrophobic trap (HPT) residues of AcrB protein critical for interactions with inhibitors, with estimated binding free energies of -95.5 kJ/mol, -97.4 kJ/mol, and -143.8 kJ/mol for naringenin, 5-methoxypsoralen, and licarin A, respectively. Data from the 50 ns MD simulation study revealed stability of the protein-ligand complex and alterations in the AcrB protein DP conformation upon binding of phytochemicals to the DP and HPT regions. Based on the estimated binding free energy and interactions with three out of five residues lining the hydrophobic trap, licarin A demonstrated the highest inhibitory potential, supporting its further application as a candidate for overcoming drug resistance in pathogens. Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , Plantas Medicinais , Salmonella enterica , 5-Metoxipsoraleno/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Farmacorresistência Bacteriana Múltipla , México , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Plantas Medicinais/química , Salmonella enterica/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
2.
Microbiol Spectr ; 10(6): e0185922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453909

RESUMO

Salmonella bacteria pose a significant threat to animal husbandry and human health due to their virulence and multidrug resistance. The lasso peptide MccY is a recently discovered antimicrobial peptide that acts against various serotypes of Salmonella. In this study, we further explore the resistance mechanism and activity of MccY. Mutants of Ton system genes, including tonB, exbB, and exbD, in Salmonella enterica subsp. enterica serovar Typhimurium were constructed, and the MICs to MccY exhibited significant increases in these deletion mutants compared to the MIC of the parent strain. Subsequently, MccY resistance was quantitatively analyzed, and these mutants also showed greatly reduced rates of killing, even with a high concentration of MccY. In addition, a minimal medium with low iron environment enhanced the sensitivity of these mutants to MccY. Measurements of a series of physiological indicators, including iron utilization, biofilm formation, and motility, demonstrated that MccY may decrease the virulence of S. Typhimurium. Transcriptomic analysis showed that iron utilization, biofilm formation, flagellar assembly, and virulence-related genes were downregulated to varying degrees when S. Typhimurium was treated with MccY. In conclusion, deletion of Ton system genes resulted in resistance to MccY and the susceptibility of these mutants to MccY was increased and differed under a low-iron condition. This lasso peptide can alter multiple physiological properties of S. Typhimurium. Our study will contribute to improve the knowledge and understanding of the mechanism of MccY resistance in Salmonella strains. IMPORTANCE The resistance of Salmonella to traditional antibiotics remains a serious challenge. Novel anti-Salmonella drugs are urgently needed to address the looming crisis. The newly identified antimicrobial peptide MccY shows broad prospects for development and application because of its obvious antagonistic effect on various serotypes of Salmonella. However, our previous study showed that the peptide could confer resistance to Salmonella by disrupting the receptor gene fhuA. In this study, we further explored the potential resistance mechanism of MccY and demonstrated the importance of the Salmonella Ton complex for MccY transport. Disruption in Ton system genes resulted in S. Typhimurium resistance to this peptide, and MccY could alter multiple bacterial physiological properties. In summary, this study further explored the resistance mechanism and antibacterial effect of MccY in S. Typhimurium and provided a scientific basis for its development and application.


Assuntos
Antibacterianos , Bacteriocinas , Salmonella enterica , Salmonella typhimurium , Antibacterianos/farmacologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella typhimurium/efeitos dos fármacos , Sorogrupo , Bacteriocinas/farmacologia
3.
Microbes Infect ; 24(5): 104972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358729

RESUMO

A multi-drug resistant, CTX-M-65 producing Salmonella Infantis was identified from a patient in Brazil. Whole genome sequencing followed by hybrid assembly (short and long reads) indicated the presence of blaCTX-M-65 in a pESI-like megaplasmid in this ST32 isolate and phylogenetic analysis showed high similarity with IncFIB S. Infantis isolates from food and poultry in the USA.


Assuntos
Farmacorresistência Bacteriana Múltipla , Salmonella enterica , Antibacterianos/farmacologia , Brasil , Genômica , Humanos , Filogenia , Plasmídeos , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , beta-Lactamases/genética
4.
J Med Microbiol ; 71(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35156609

RESUMO

Introduction. Antimicrobial resistance (AMR) is a One Health issue concerning humans, animals and the environment and a unified One Health approach is required to contain this problematic issue. Dogs and cats are popular pet animals and are known to carry many bacterial pathogens that are of public health importance, including Salmonella. However, data on AMR in companion animals is limited.Gap statement. Scant AMR data from bacteria originating from companion animals limits an accurate assessment of the impacts of pet-animal-related AMR on public health.Purpose. This study aimed to phenotypically and genetically investigate AMR in Salmonella isolated from pet dogs and cats in Thailand.Methodology. Salmonella enterica were isolated from pet dogs (n=159) and cats (n=19) in Thailand between 2016 and 2019. All isolates were serotyped. Phenotypic and genotypic antimicrobial resistance was examined. PCR-based replicon typing, replicon sequence typing and plasmid multilocus sequence typing were conducted to characterize plasmids.Results. Seventy-seven serovars were identified, with serovars Weltevreden (9.6%) and Stockholm (9.0%) the most common. Most of the isolates (34.3%) were multidrug-resistant. The serovar Stockholm was an ESBL-producer and carried the ß-lactamase genes bla TEM-1 and bla CTX-M-55. The plasmid-mediated quinolone resistance (PMQR) gene, qnrS, was also detected (10.1%). Class 1 integrons carrying the dfrA12-aadA2 cassette array were most frequent (45.9%). Five plasmid replicon types as IncA/C (0.6%), N (1.1%), IncFIIA (28.7%), IncHI1 (2.2%), and IncI1 (3.4%) were identified. Based on the pMLST typing scheme (n=9), plasmids were assigned into five different STs including IncA/C-ST6 (n=1), IncH1-ST16 (n=4), IncI1-ST3 (n=1), IncI1-ST60 (n=1) and IncI1-ST136 (n=1). The ST 16 of IncHI1 plasmid was a novel plasmid ST. Subtyping F-type plasmids using the RST scheme (n=9) revealed four different combinations of replicons including S1:A-:B- (n=4), S1:A-:B22 (n=2), S3:A-:B- (n=1) and S-:A-:B47 (n=1).Conclusions. Our findings highlight the role of clinically healthy household dogs and cats as carriers of AMR Salmonella strains with different R plasmid. The implementation of AMR phenotypes instigation and genotypic monitoring and surveillance programmes in companion animals are imperative as integral components of the One Health framework.


Assuntos
Portador Sadio/veterinária , Gatos , Cães , Farmacorresistência Bacteriana Múltipla , Salmonella enterica , Salmonella , Animais , Antibacterianos/farmacologia , Gatos/microbiologia , Cães/microbiologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Fatores R , Salmonella/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Tailândia/epidemiologia , beta-Lactamases/genética
5.
BMC Microbiol ; 22(1): 51, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144539

RESUMO

BACKGROUND: The management of enteric fever through antibiotics is difficult these days due to the emerging resistance of Salmonella to various antimicrobial agents. The development of antimicrobial resistance is associated with multiple factors including mutations in the specific genes. To know the current status of mutation-mediated fluoroquinolone-resistance among Salmonella enterica serovars; Typhi, Paratyphi A, B and C, this study was focused on detecting gyrA ser83 mutation by restriction digestion analysis of gyrA gene using HinfI endonuclease. RESULTS: A total of 948 blood samples were processed for isolation of Salmonella spp. and 3.4% of them were found to be positive for Salmonella growth. Out of the 32 Salmonella isolates, 2.2% were S. Typhi and 1.2% were S. Paratyphi A. More interestingly, we observed less than 5% of isolates were resistant to first-line drugs including chloramphenicol, cotrimoxazole and ampicillin. More than 80% of isolates were resistant to fluoroquinolones accounting for 84.4% to levofloxacin followed by 87.5% to ofloxacin and 100% to ciprofloxacin by disc diffusion methods. However, the minimum inhibitory concentration method using agar dilution showed only 50% of isolates were resistant to ciprofloxacin. A total of 3.1% of isolates were multidrug-resistant. Similarly, 90.6% of the Salmonella isolates showed gyrA ser83 mutation with resistance to nalidixic acid. CONCLUSIONS: The increased resistance to fluoroquinolones and nalidixic acid in Salmonella isolates in our study suggests the use of alternative drugs as empirical treatment. Rather, the treatment should focus on prescribing first-line antibiotics since we observed less than 5% of Salmonella isolates were resistant to these drugs.


Assuntos
Antibacterianos/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Mutação , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sorogrupo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Centros de Atenção Terciária/estatística & dados numéricos , Febre Tifoide/sangue , Febre Tifoide/epidemiologia , Febre Tifoide/microbiologia , Adulto Jovem
6.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163919

RESUMO

Extracts of Hibiscus sabdariffa L. (commonly called Rosselle or "Jamaica flower" in Mexico) have been shown to have antibiotic and antivirulence properties in several bacteria. Here, an organic extract of H. sabdariffa L. is shown to inhibit motility in Salmonella enterica serovars Typhi and Typhimurium. The compound responsible for this effect was purified and found to be the hibiscus acid. When tested, this compound also inhibited motility and reduced the secretion of both flagellin and type III secretion effectors. Purified hibiscus acid was not toxic in tissue-cultured eukaryotic cells, and it was able to reduce the invasion of Salmonella Typhimurium in epithelial cells. Initial steps to understand its mode of action showed it might affect membrane proton balance.


Assuntos
Antibacterianos/farmacologia , Citratos/farmacologia , Flagelos/fisiologia , Flores/química , Hibiscus/química , Extratos Vegetais/farmacologia , Salmonella enterica/efeitos dos fármacos , Flagelos/efeitos dos fármacos
7.
Microbiol Spectr ; 10(1): e0146321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019684

RESUMO

Anthranilate is a diffusible molecule produced by Pseudomonas aeruginosa and accumulates as P. aeruginosa grows. Anthranilate is an important intermediate for the synthesis of tryptophan and the Pseudomonas quinolone signal (PQS), as well as metabolized by the anthranilate dioxygenase complex (antABC operon products). Here we demonstrate that anthranilate is a key factor that modulates the pathogenicity-related phenotypes of P. aeruginosa and other surrounding bacteria in the environment, such as biofilm formation, antibiotic tolerance, and virulence. We found that the anthranilate levels in P. aeruginosa cultures rapidly increased in the stationary phase and then decreased again, forming an anthranilate peak. Biofilm formation, antibiotic susceptibility, and virulence of P. aeruginosa were significantly altered before and after this anthranilate peak. In addition, these phenotypes were all modified by the mutation of antABC and exogenous addition of anthranilate. Anthranilate also increased the antibiotic susceptibility of other species of bacteria, such as Escherichia coli, Salmonella enterica, Bacillus subtilis, and Staphylococcus aureus. Before the anthranilate peak, the low intracellular anthranilate level was maintained through degradation from the antABC function, in which induction of antABC was also limited to a small extent. The premature degradation of anthranilate, due to its high levels, and antABC expression early in the growth phase, appears to be toxic to the cells. From these results, we propose that by generating an anthranilate peak as a signal, P. aeruginosa may induce some sort of physiological change in surrounding cells. IMPORTANCE Pseudomonas aeruginosa is a notorious pathogen with high antibiotic resistance, strong virulence, and ability to cause biofilm-mediated chronic infection. We found that these characteristics change profoundly before and after the time when anthranilate is produced as an "anthranilate peak". This peak acts as a signal that induces physiological changes in surrounding cells, decreasing their antibiotic tolerance and biofilm formation. This study is important in that it provides a new insight into how microbial signaling substances can induce changes in the pathogenicity-related phenotypes of cells in the environment. In addition, this study shows that anthranilate can be used as an adjuvant to antibiotics.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , ortoaminobenzoatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulência
8.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056664

RESUMO

Monterey cypress (Cupressus macrocarpa) is a decorative plant; however, it possesses various pharmacological activities. Therefore, we explored the phytochemical profile of C. macrocarpa root methanol extract (CRME) for the first time. Moreover, we investigated its antidiarrheal (in vivo), antibacterial, and antibiofilm (in vitro) activities against Salmonella enterica clinical isolates. The LC-ESI-MS/MS analysis of CRME detected the presence of 39 compounds, besides isolation of 2,3,2″,3″-tetrahydro-4'-O-methyl amentoflavone, amentoflavone, and dihydrokaempferol-3-O-α-l-rhamnoside for the first time. Dihydrokaempferol-3-O-α-l-rhamnoside presented the highest antimicrobial activity and the range of values of MICs against S. enterica isolates was from 64 to 256 µg/mL. The antidiarrheal activity of CRME was investigated by induction of diarrhea using castor oil, and exhibited a significant reduction in diarrhea and defecation frequency at all doses, enteropooling (at 400 mg/kg), and gastrointestinal motility (at 200, 400 mg/kg) in mice. The antidiarrheal index of CRME increased in a dose-dependent manner. The effect of CRME on various membrane characters of S. enterica was studied after typing the isolates by ERIC-PCR. Its impact on efflux and its antibiofilm activity were inspected. The biofilm morphology was observed using light and scanning electron microscopes. The effect on efflux activity and biofilm formation was further elucidated using qRT-PCR. A significant increase in inner and outer membrane permeability and a significant decrease in integrity and depolarization (using flow cytometry) were detected with variable percentages. Furthermore, a significant reduction in efflux and biofilm formation was observed. Therefore, CRME could be a promising source for treatment of gastrointestinal tract diseases.


Assuntos
Antibacterianos/farmacologia , Antidiarreicos/farmacologia , Cupressus/química , Diarreia/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Salmonella enterica/efeitos dos fármacos , Animais , Óleo de Rícino/toxicidade , Catárticos/toxicidade , Diarreia/induzido quimicamente , Diarreia/patologia , Motilidade Gastrointestinal , Técnicas In Vitro , Masculino , Camundongos
10.
J Bacteriol ; 204(1): e0045021, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662241

RESUMO

Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contributes to their functional differences in a Salmonella enterica host.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/farmacologia , Ácidos Cetoglutáricos/metabolismo , Piridoxal/metabolismo , Saccharomyces cerevisiae/química , Salmonella enterica/efeitos dos fármacos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucose , Ácidos Cetoglutáricos/farmacologia , Redes e Vias Metabólicas/fisiologia , Mutação , Piridoxal/farmacologia
11.
Zoonoses Public Health ; 69(1): 1-12, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716745

RESUMO

Salmonella enterica subsp. enterica serovar Kentucky is frequently isolated from poultry, dairy and beef cattle, the environment and people with clinical salmonellosis globally. However, the sources of this serovar and its diversity and antimicrobial resistance capacities remain poorly described in many regions. To further understand the genetic diversity and antimicrobial sensitivity patterns among S. Kentucky strains isolated from non-human sources in Ireland, we sequenced and analysed the genomes of 61 isolates collected from avian, bovine, canine, ovine, piscine, porcine, environmental and vegetation sources between 2000 and 2016. The majority of isolates (n = 57, 93%) were sequence type (ST) 314, while only three isolates were ST198 and one was ST152. Several isolates were multidrug-resistant (MDR) and 14 carried at least one acquired antimicrobial resistance gene. When compared to a database of publicly available ST314, four distinct clades were identified (clades I-IV), with the majority of isolates from Ireland clustering together in Clade I. Two of the three ST198 isolates were characteristic of those originating outside of the Americas (Clade ST198.2), while one was distantly clustered with isolates from South and North America (Clade ST198.1). The genomes of the two clade ST198.2 isolates encoded Salmonella Genomic Island 1 (SGI1), were multidrug-resistant and encoded polymorphisms in the DNA gyrase (gyrA) and DNA topoisomerase (parC) known to confer resistance to fluoroquinolones. The single ST152 isolate was from raw beef, clustered with isolates from food and bovine sources in North America and was pan-susceptible. Results of this study indicate that most S. Kentucky isolates from non-human sources in Ireland are closely related ST314 and only a few isolates are antimicrobial-resistant. This study also demonstrates the presence of multidrug-resistant ST198 in food sources in Ireland.


Assuntos
Farmacorresistência Bacteriana Múltipla , Salmonella enterica , Animais , Antibacterianos/farmacologia , Bovinos , Cães , Farmacorresistência Bacteriana Múltipla/genética , Microbiologia de Alimentos , Genômica , Irlanda/epidemiologia , Testes de Sensibilidade Microbiana/veterinária , Aves Domésticas , Salmonella , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sorogrupo , Ovinos , Suínos
12.
Food Microbiol ; 101: 103876, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579844

RESUMO

The efficacy of plant-based antimicrobials against Salmonella Newport and Listeria monocytogenes on melon rinds was evaluated. Four cantaloupe and 3 honeydew melon varieties grown in Georgia, Arizona, Texas, North Carolina, Indiana and California were tested. Melon rinds (10 g pieces) were inoculated with 5-6 log CFU/10 g rind of S. Newport or L. monocytogenes. Samples were then immersed in 5 % olive extract or 0.5 % oregano oil antimicrobial solution and gently agitated for 2 min. Samples were stored at 4 °C and surviving populations of both bacteria were enumerated at days 0 and 3. Plant-based antimicrobials reduced S. Newport and L.monocytogenes population on all rind samples, regardless of the melon types, varieties or growing locations. Compared to the control, antimicrobial treatments caused up to 3.6 and 4.0 log reductions in populations of Salmonella and L. monocytogenes, respectively. In most cases, plant-based antimicrobial treatments reduced pathogen populations to below the detection limit (1 log CFU/g) at day 3. In general, oregano oil had better antimicrobial activity than olive extract and the antimicrobial treatments were more effective on Salmonella than on L. monocytogenes. The plant-based antimicrobial treatments exhibited better microbial reductions on honeydews than on cantaloupes. These antimicrobials could potentially be used as sanitizers for decontaminating melons.


Assuntos
Anti-Infecciosos , Cucurbitaceae , Contaminação de Alimentos/prevenção & controle , Listeria monocytogenes , Salmonella enterica , Anti-Infecciosos/farmacologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Cucurbitaceae/microbiologia , Manipulação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Estados Unidos
13.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882531

RESUMO

Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to dissemination of antibiotic resistance genes (ARGs) in the gut microbiota. The gut microbiota often suffers from various disturbances. It is not clear whether and how disturbed microbiota may affect ARG mobility under antibiotic treatments. For proof of concept, in the presence or absence of streptomycin pre-treatment, mice were inoculated orally with a ß-lactam-susceptible Salmonella enterica serovar Heidelberg clinical isolate (recipient) and a ß-lactam resistant Escherichia coli O80:H26 isolate (donor) carrying a blaCMY-2 gene on an IncI2 plasmid. Immediately following inoculation, mice were treated with or without ampicillin in drinking water for 7 days. Faeces were sampled, donor, recipient and transconjugant were enumerated, blaCMY-2 abundance was determined by quantitative PCR, faecal microbial community composition was determined by 16S rRNA amplicon sequencing and cecal samples were observed histologically for evidence of inflammation. In faeces of mice that received streptomycin pre-treatment, the donor abundance remained high, and the abundance of S. Heidelberg transconjugant and the relative abundance of Enterobacteriaceae increased significantly during the ampicillin treatment. Co-blooming of the donor, transconjugant and commensal Enterobacteriaceae in the inflamed intestine promoted significantly (P<0.05) higher and possibly wider dissemination of the blaCMY-2 gene in the gut microbiota of mice that received the combination of streptomycin pre-treatment and ampicillin treatment (Str-Amp) compared to the other mice. Following cessation of the ampicillin treatment, faecal shedding of S. Heidelberg transconjugant persisted much longer from mice in the Str-Amp group compared to the other mice. In addition, only mice in the Str-Amp group shed a commensal E. coli O2:H6 transconjugant, which carries three copies of the blaCMY-2 gene, one on the IncI2 plasmid and two on the chromosome. The findings highlight the significance of pre-existing gut microbiota for ARG dissemination and persistence during and following antibiotic treatments of infectious diseases.


Assuntos
Ampicilina/administração & dosagem , Escherichia coli/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Salmonella enterica/genética , Estreptomicina/administração & dosagem , Resistência beta-Lactâmica , beta-Lactamases/genética , Ampicilina/farmacologia , Animais , Antibioticoprofilaxia , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Fezes/microbiologia , Feminino , Transferência Genética Horizontal , Infecções por Bactérias Gram-Negativas/microbiologia , Camundongos , Estudo de Prova de Conceito , RNA Ribossômico 16S/genética , Infecções por Salmonella , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/patogenicidade , Estreptomicina/farmacologia , Sequenciamento Completo do Genoma
14.
Commun Biol ; 4(1): 1267, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741116

RESUMO

Proliferation of multidrug-resistant (MDR) bacteria poses a threat to human health, requiring new strategies. Here we propose using fitness neutral gene expression perturbations to potentiate antibiotics. We systematically explored 270 gene knockout-antibiotic combinations in Escherichia coli, identifying 90 synergistic interactions. Identified gene targets were subsequently tested for antibiotic synergy on the transcriptomic level via multiplexed CRISPR-dCas9 and showed successful sensitization of E. coli without a separate fitness cost. These fitness neutral gene perturbations worked as co-therapies in reducing a Salmonella enterica intracellular infection in HeLa. Finally, these results informed the design of four antisense peptide nucleic acid (PNA) co-therapies, csgD, fnr, recA and acrA, against four MDR, clinically isolated bacteria. PNA combined with sub-minimal inhibitory concentrations of trimethoprim against two isolates of Klebsiella pneumoniae and E. coli showed three cases of re-sensitization with minimal fitness impacts. Our results highlight a promising approach for extending the utility of current antibiotics.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/genética , Expressão Gênica/efeitos dos fármacos , Klebsiella pneumoniae/genética , Salmonella enterica/genética , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos
15.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768739

RESUMO

In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-Acetyl-l-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention.


Assuntos
Acetilcisteína/farmacologia , Benzofuranos/farmacologia , Doenças Transmitidas por Alimentos/tratamento farmacológico , Glicolipídeos/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
16.
ScientificWorldJournal ; 2021: 7011493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754277

RESUMO

In this study, the polyphenol content and the antioxidant and antimicrobial activities of hydroethanolic (MVE) and hydroacetonic (MVA) leaf extracts of Marrubium vulgare L. were examined. The results indicated that the total phenolic content was higher in MVA (112.09 ± 4.77 mg GAE/DW) compared to MVE extract (98.77 ± 1.68 mg GAE/DW). The total flavonoid content was also higher in MVA extract (21.08 ± 0.38 mg QE/g DW) compared to MVE (17.65 ± 0.73 mg QE/g DW). Analysis of the chemical composition revealed the presence of 13 compounds with a total of 96.14%, with the major compound being malic acid (22.57%). Both extracts possess a good total antioxidant activity. DPPH and FRAP assays indicated that the MVE extract possesses a better antioxidant activity, with IC50 = 52.04 µg/mL ± 0.2 and EC50 of 4.51 ± 0.5 mg/mL, compared to MVA extract (IC50 = 60.57 ± 0.6 µg/mL and EC50 of 6.43 ± 0.0411 mg/mL). Moreover, both extracts exhibited strong antimicrobial activity against certain nosocomial strains as indicted by the MIC values, which ranged between 0.93 mg/mL and 10 mg/mL. Taken together, these results reveal the importance of M. vulgare as a natural antioxidant with important antimicrobial activity.


Assuntos
Anti-Infecciosos/análise , Antioxidantes/análise , Marrubium/química , Extratos Vegetais/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Aspergillus niger/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Flavonoides/análise , Fenóis/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
17.
Sci Rep ; 11(1): 19634, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608194

RESUMO

The persistent increase of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) infections negatively impacts Tuberculosis treatment outcomes. Host-directed therapies (HDT) pose an complementing strategy, particularly since Mtb is highly successful in evading host-defense by manipulating host-signaling pathways. Here, we screened a library containing autophagy-modulating compounds for their ability to inhibit intracellular Mtb-bacteria. Several active compounds were identified, including two drugs of the diphenylbutylpiperidine-class, Fluspirilene and Pimozide, commonly used as antipsychotics. Both molecules inhibited intracellular Mtb in pro- as well as anti-inflammatory primary human macrophages in a host-directed manner and synergized with conventional anti-bacterials. Importantly, these inhibitory effects extended to MDR-Mtb strains and the unrelated intracellular pathogen, Salmonella enterica serovar Typhimurium (Stm). Mechanistically Fluspirilene and Pimozide were shown to regulate autophagy and alter the lysosomal response, partly correlating with increased bacterial localization to autophago(lyso)somes. Pimozide's and Fluspirilene's efficacy was inhibited by antioxidants, suggesting involvement of the oxidative-stress response in Mtb growth control. Furthermore, Fluspirilene and especially Pimozide counteracted Mtb-induced STAT5 phosphorylation, thereby reducing Mtb phagosome-localized CISH that promotes phagosomal acidification. In conclusion, two approved antipsychotic drugs, Pimozide and Fluspirilene, constitute highly promising and rapidly translatable candidates for HDT against Mtb and Stm and act by modulating the autophagic/lysosomal response by multiple mechanisms.


Assuntos
Antibacterianos/farmacologia , Antipsicóticos/farmacologia , Antituberculosos/farmacologia , Reposicionamento de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Lisossomos/metabolismo , Testes de Sensibilidade Microbiana , Modelos Biológicos , Fagossomos/metabolismo , Pimozida/farmacologia , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Bibliotecas de Moléculas Pequenas , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
18.
J Mater Chem B ; 9(43): 9041-9054, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664611

RESUMO

In this study, we report that host defense protein-derived ten amino acid long disulfide-linked peptides self-assemble in the form of ß-sheets and ß-turns, and exhibit concentration-dependent self-assembly in the form of nanospheres, termed as disulfide linked nanospheres (DSNs). As expected, bare DSNs are prone to aggregation in ionic solutions and in the presence of serum proteins. To yield physiologically stable self-assembled peptide-based materials, DSNs are stabilized in the form of supramolecular assemblies using ß-cyclodextrins (ß-CD) and fucoidan, as delivery carriers. The inclusion complexes of DSNs with ß-CD (ß-CD-DSN) and electrostatic complexation of fucoidan with DSNs (FC-DSN) stabilizes the secondary structure of DSNs. Comparison of ß-CD-DSNs with FC-DSNs reveals that inclusion complexes of DSNs formed in the presence of ß-CD are highly stable under physiological conditions, show high cellular uptake, exhibit bacterial flocculation, and enhance antibacterial efficacies of DSNs in a range of Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanosferas/química , Peptídeos/farmacologia , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Células CACO-2 , Galinhas , Dissulfetos/química , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Propriedades de Superfície , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
19.
Microb Genom ; 7(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693903

RESUMO

Non-typhoidal Salmonella enterica is an important gastrointestinal pathogen causing a considerable burden of disease. Resistance to third generation cephalosporins poses a serious threat for treatment of severe infections. In this study occurrence, phylogenetic relationship, and mechanisms of third generation cephalosporin resistance were investigated for clinical non-typhoidal S. enterica isolates in Germany. From 2017 to 2019, we detected 168 unique clinical S. enterica isolates with phenotypic resistance to third generation cephalosporins in a nation-wide surveillance. Compared to previous years, we observed a significant (P=0.0002) and consistent increase in resistant isolates from 0.41 % in 2005 to 1.71 % in 2019. In total, 34 different serovars were identified, most often S. Infantis (n=41; 24.4 %), S. Typhimurium (n=27; 16.1 %), S. Kentucky (n=21; 12.5 %), and S. Derby (n=17; 10.1 %). Whole genome analyses revealed extended-spectrum ß-lactamase (ESBL) genes as main cause for third generation cephalosporin resistance, and most prevalent were blaCTX-M-1 (n=55), blaCTX-M-14 (n=25), and blaCTX-M-65 (n=23). There was no strict correlation between serovar, phylogenetic lineage, and ESBL type but some serovar/ESBL gene combinations were detected frequently, such as blaCTX-M-1 and blaCTX-M-65 in S. Infantis or blaCTX-M-14b in S. Kentucky. The ESBL genes were mainly located on plasmids, including IncI, IncA/C variants, emerging pESI variants, and a novel blaCTX-M-1harbouring plasmid. We conclude that third generation cephalosporin resistance is on the rise among clinical S. enterica isolates in Germany, and occurrence in various S. enterica serovars is most probably due to multiple acquisition events of plasmids.


Assuntos
Resistência às Cefalosporinas/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Salmonella enterica/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Cefalosporinas , Alemanha , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Sorogrupo
20.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502290

RESUMO

BACKGROUND: Salmonella Kentucky belongs to zoonotic serotypes that demonstrate that the high antimicrobial resistance and multidrug resistance (including fluoroquinolones) is an emerging problem. To the best of our knowledge, clinical S. Kentucky strains isolated in Poland remain undescribed. METHODS: Eighteen clinical S. Kentucky strains collected in the years 2018-2019 in Poland were investigated. All the strains were tested for susceptibility to 11 antimicrobials using the disc diffusion and E-test methods. Whole genome sequences were analysed for antimicrobial resistance genes, mutations, the presence and structure of SGI1-K (Salmonella Genomic Island and the genetic relationship of the isolates. RESULTS: Sixteen of 18 isolates (88.9%) were assigned as ST198 and were found to be high-level resistant to ampicillin (>256 mg/L) and quinolones (nalidixic acid MIC ≥ 1024 mg/L, ciprofloxacin MIC range 6-16 mg/L). All the 16 strains revealed three mutations in QRDR of GyrA and ParC. The substitutions of Ser83 → Phe and Asp87 → Tyr of the GyrA subunit and Ser80→Ile of the ParC subunit were the most common. One S. Kentucky isolate had qnrS1 in addition to the QRDR mutations. Five of the ST198 strains, grouped in cluster A, had multiple resistant determinants like blaTEM1-B, aac(6')-Iaa, sul1 or tetA, mostly in SGI1 K. Seven strains, grouped in cluster B, had shorter SGI1-K with deletions of many regions and with few resistance genes detected. CONCLUSION: The results of this study demonstrated that a significant part of S. Kentucky isolates from humans in Poland belonged to ST198 and were high-level resistant to ampicillin and quinolones.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Mutação , Filogenia , Polônia , Polimorfismo de Nucleotídeo Único , Infecções por Salmonella/microbiologia , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...